Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
نویسندگان
چکیده
We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neural networks.
منابع مشابه
Parameters estimation for spatio-temporal maximum entropy distributions: application to neural spike trains
We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [5] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neura...
متن کاملSpatio-temporal spike trains analysis for large scale networks using maximum entropy principle and Monte-Carlo method
Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In a first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have been focusing on m...
متن کاملAnalyzing large-scale spike trains data with spatio-temporal constraints
Recent experimental advances have made it possible to record several hundred neurons simultaneously in the retina as well as in the cortex. Analyzing such a huge amount of data requires to elaborate statistical, mathematical and numerical methods, to describe both the spatio-temporal structure of the population activity and its relevance to sensory coding. Among these methods, the maximum entro...
متن کاملEstimating the Temporal Interval Entropy of Neuronal Discharge
To better understand the role of timing in the function of the nervous system, we have developed a methodology that allows the entropy of neuronal discharge activity to be estimated from a spike train record when it may be assumed that successive interspike intervals are temporally uncorrelated. The so-called interval entropy obtained by this methodology is based on an implicit enumeration of a...
متن کاملGenerating Spike Trains with Specified Correlation Coefficients
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014